Major New Study: How Your Eyes Can Cast Your Fate In A Gunfight (Part 1)

Print Friendly, PDF & Email

Part 1 of a 2-part series

A major new study by the Force Science Research Center for the first time has identified exactly how the “gaze patterns” of officers who are likely to win gunfights differ from those who are likely to lose them.

Winners, it is revealed, tend to anticipate an emerging threat sooner, shoot to stop it faster and more accurately, and make fewer errors in judgment because of the unique way in which they watch a potential attacker’s body as a deadly confrontation unfolds.

A key finding: Those who win lethal assaults do so, in part, because they achieve target acquisition with their firearm in a way that is directly opposite of how most officers are trained.

“This unique study shows that winning a gunfight involves more than just issues of action and reaction times,” FSRC’s executive director Dr. Bill Lewinski told Force Science News. “Where an officer is looking during an encounter, what kind of information he is picking up, and how he is processing it are also vitally important. An effective gaze control strategy can help officers minimize or defeat the action/reaction advantage that the suspect might otherwise have.

“In short, an officer’s performance can be impaired or enhanced by where his eyes and attention are focused in the midst of a deadly encounter.”

What the new study discovered about that phenomenon, Lewinski says, could have significant repercussions on law enforcement firearms training.

The study was conducted by Lewinski and Dr. Joan Vickers of Canada’s University of Calgary, a renowned researcher of the relationship between eye movement and athletic performance. They recently presented the first detailed report of their findings at the prestigious International Conference on Spatial Cognition in Rome.

Their full paper, “Gaze Control and Shooting Performance of Elite and Rookie Police Officers During a Force-on-Force Encounter,” will be posted on the Force Science website once it has been published in an academic journal. Meanwhile, FSN’s 2-part series is the first disclosure to the international law enforcement community about the study’s surprising practical discoveries.


Field work for the research was conducted a year ago in the United Kingdom with the help of 24 police volunteers. Eleven were highly experienced, male veterans of an Emergency Response Team (ERT), seasoned in fighting terrorists among other assignments, with a median age of nearly 39. The rest were younger rookies (median age just over 30), 7 of them female, who had completed their pre-service firearms and simulation training and were considered “ready for the street.” Both groups predominately were right-eye shooters.

The research scenario, designed by Lewinski, was based on an actual incident. One at a time the volunteers were armed with a holstered Glock pistol fitted to fire a single Simunition cartridge and told they were on duty to “provide security” at an embassy office where intelligence had indicated an armed encounter would occur that day.

About 20 feet in front of the officer being tested was a receptionist at a desk. Presently an adult male, playing the role of a civilian tourist, entered the room and engaged the receptionist in conversation regarding a problem with his passport, keeping his back to the subject officer.

Initially the exchange was polite but as the receptionist proved not to be helpful the man became increasingly agitated. About 3 seconds before the end of the 1-minute scenario, his voice started to rise and he began cursing and slapping the table. Suddenly, in an explosion of rage, he yanked an object from under his coat and pivoted quickly.

In most instances, the object was a handgun and he fired at the officer. But randomly he spun around only with a cell phone. The volunteers were not advised in advance of this “catch” switch. They were told only that they should “handle the threat” appropriately, using their handgun.

“The suspect’s dynamic turning and shooting unfolded very rapidly,” Lewinski says, “and presented quite a challenge for any officer. We wanted to detect the clearest demonstration of operational differences, and that’s why groups of the best and the least experienced officers were chosen.”

Each volunteer went through the scenario 7 times. According to the researchers, no significant change was noticed in their reactions with repetition.


During the scenario, each officer wore a light-weight, head-mounted apparatus with 2 sophisticated and highly sensitive computer-interactive components: 1) a small video camera that filmed the scene being played out in front of the officer from the officer’s perspective, and 2) a mobile monocular “eye tracker” that used reflection off of the officer’s cornea to precisely document his line of sight.

Just where the officer’s gaze was directed at any given split-second was overlaid on the digital image the camera was recording, in the form of a small red circle. In other words, exactly where the officer was looking, when he was looking there, in what sequence, and for how long were all captured in a continuous, time-coded format that allowed every location of his gaze to be noted and analyzed later.

A separate video camera was placed in the room to photograph each officer frontally from head to toe as he experienced and reacted to the role-playing. These images were later synced with those from the headgear. (The data collection system, developed by Vickers, is called the vision-in-action method. Samples of the recordings will be posted on the Force Science website when the academic paper is posted. For more information, see Vickers’ book, Perception, Cognition and Decision Training: The Quiet Eye in Action.)

Keeping the scenario consistent across all officers, of course, was critical for comparison purposes. So the receptionist (played by FSRC executive Patricia Thiem) and the suspect (played by Lt. Lee Edwards of the Minneapolis PD) worked extensively with an acting coach, who trained them to maintain the same timing and mannerisms across repeated performances.

The field recordings took 2 full weeks to complete; the subsequent analysis took months. Here are the most significant findings:


The ERT officers, considered the elite shooters in the study, strongly out-performed the rookies.

  • First of all, the ERT spent significantly less time assessing the situation before drawing their gun. On whole, they drew “well before the assailant began his pivot,” Vickers reports. Most drew early and “held [their gun] at chest level before aiming.” The rookies tended to delay drawing until about a second after his turn.
  • The ERT shot before the assailant got his round off 92.5% of the time, beating him by an average of nearly 180 milliseconds (ms). The rookies shot first only about 42% of the time and on average lagged behind the attacker by more than 13 ms. Responding “very poorly,” the study says, the rookies essentially “reacted to his attack, rather than being ahead of him as were the ERT during every phase of the encounter.”
  • The ERT hit the assailant nearly 75% of the time, compared to about 54%—“slightly more than chance”—for the recently trained rookies. ERT hits were in the upper torso (center mass) 62% of the time, versus about 48% for the rookies.
  • In more than 60% of their trials, rookies fired when the assailant brandished a cell phone instead of a gun, compared to only about 18% for the ERT.


Anyone would expect highly experienced elites to shoot better than rank novices, but what’s impressive is the relationship that gaze and focus appeared to have to performance.

As part of their meticulous analysis of where the test subjects were looking during the last critical 7 seconds of the scenario, the researchers tabulated 2 important factors: fixations (when an officer’s gaze was stable on an object or location within a 3-degree visual angle for 100 ms or longer) and saccades (when the eyes moved rapidly from 1 fixed location to another for at least 66.66 ms).

Among their discoveries, these are considered most meaningful:

  • The ERT officers tended to use fixations of only short duration early in the encounter, during their initial assessment and as the suspect began to pivot toward them. Then they used longer-duration fixations as they aimed and fired. “They needed less time to ‘read’ critical cues” and acquire external feedback information that “allowed them to prepare their shooting movements in advance and prevail over the assailant,” the researchers explain. Thus the ERT “were ahead of the assailant in terms of their motor phases and gaze control across all phases of the encounter.”
  • “The rookies used an opposite strategy and had long-duration fixations at the outset and shorter durations as they aimed and fired.” In effect, “the rookies were behind” the suspect’s actions and were “caught by surprise.” They “used a reactive strategy where they acquired information at the last moment, which was inadequate both in terms of its content and timing for the extreme demands of the encounter.”
  • “The ERT had a higher frequency of fixations than the rookies in all phases [of the scenario] except the aim/fire phase, when the ERT had fewer fixations to fewer locations than the rookies, indicative of greater focus and concentration as they aimed and fired.”
  • The ERT increasingly directed their attention to the suspect’s gun hand/arm as the scenario evolved. “They increased the percent of fixations to this location from 21% in the assessment and early pivot phases to 71% during the final 2 seconds. On hits, the ERT directed 86% of their final fixations to this one location, revealing a remarkable degree of focus and concentration under fire.” And, the study explains, they had time for a final, undisturbed period of super-concentration that Vicker’s calls “the quiet eye,” which has been linked with high performance across many different genres of athletics. In this, their eye remained settled on a defined target location through trigger pull.
  • “The rookies did not show the same funneling of their attention to the assailant’s gun hand/arm,” the study points out. Early on, similar to the ERT, they concentrated a minority of their fixations there. But at the time the suspect aimed and fired, only 33% of the rookies’ fixations were directed there, a modest and inadequate increase. And whatever quiet-eye time they exhibited was significantly lower.


Perhaps most startling, the officers’ last abrupt shift of gaze before firing was found to be radically different between the 2 groups.

  • The rookie’s final saccade, especially among those who missed when they fired, “occurred at the same time they tried to fixate the target and aim,” the study reveals. At that critical moment in the last 500 ms, the rookies in a staggering 82% of their tests took their eyes off the assailant and attempted to look at their own gun, trying to find or confirm sight alignment as they aimed. “This pulled them out of the gunfight for what turned out to be a significant period of time,” Lewinski says. Vickers adds: “On a high percentage of their shots, the rookies did not see the assailant as they fired,” contributing to inaccurate shooting and the misjudgment of the cell phone as a threat.
  • About 30% of the ERT also looked at their gun, but their timing was different. Most of those gaze-shifts occurred before the officers aimed, “followed by the onset of their aim and fixation on the target and firing.”


The researchers pose the possibility that the rookies’ training may have contributed to their poor performance. They were taught pistolcraft “similar to how most police officers first learn to shoot a handgun: to focus first on the rear sight, then on the front sight, and finally on the target, aligning all 3 before pulling the trigger.”

“This is a very time-consuming process and one that was not successful in this study,” Vickers says.

Somewhere across their training, practice, and experience, the successful ERT officers had learned what essentially is a reverse process: Their immediate and predominate focus is on the weapon carried by their attacker. With their gaze concentrated there, they bring their gun up to their line of sight and catch their sights only in their peripheral vision, a subtle “sight glimpse,” as Lewinski terms it. “They have an unconscious kinesthetic sense to know that their gun is up and positioned properly,” he says. “This is a focus strategy that Olympic shooters use,” says Vickers, “and it is simpler, faster, and more effective.”

As the assailant’s actual attack got underway, the elite officers were zeroed in on a “weapons focus.” That is, the ERT officers’ “fixations were not directed to the assailant’s centre of mass as he pivoted and fired, but to the weapon itself, which he held away from his body until the moment he fired. The ERT tracked the weapon as soon as it was visible, using a series of fixations. Because he was moving rapidly, it was only during the last few milliseconds that his centre mass presented a viable target.”

“This intense attentiveness to the weapon can have memory implications later on,” Lewinski explains. “Now we have an empirical study showing why an officer who survives a gunfight may be unable to identify a perpetrator’s face or recall other important details proximate to the shooting, such as the body position or turning action of the subject.”

Now that the study has documented important ways in which expert shooters behave, how can trainers best convey these elite skills to other officers? “FSRC plans to do more work with Dr. Vickers to identify answers to that question,” Lewinski says. “But already, these findings suggest some important changes that will point us in the right direction.”

NOTE: The gaze pattern study was funded jointly by the National Police Federation of England and Wales and the Force Science Research Center.

2 Responses
  1. […] Confirms what I have been preaching and teaching for over 20 years. Not only does relying on square range training not prepare you for the real thing but is actually harmful. And as usual, experience counts. See Boyd’s OODA Loop Trainers and trainees better wake up. It also confirms my belief that fewer police and suspects would be killed if all cops had to work as a bouncer for six months before hitting the street. When you don’t have a gun as a fall back you learn to recognize the behaviors that cause you to go hands on much faster. Doing so often prevents an attack before it gets started. Read about the ground breaking study here. […]

Leave a Reply


  • Privacy Policy

Privacy Policy

Effective date: January 06, 2019

Force Science Institute, Ltd. (“us”, “we”, or “our”) operates the https://www.forcescience.org/ website (hereinafter referred to as the “Service”).

This page informs you of our policies regarding the collection, use, and disclosure of personal data when you use our Service and the choices you have associated with that data. Our Privacy Policy for Force Science Institute, Ltd. is based on the Privacy Policy Template from Privacy Policies.

We use your data to provide and improve the Service. By using the Service, you agree to the collection and use of information in accordance with this policy. Unless otherwise defined in this Privacy Policy, the terms used in this Privacy Policy have the same meanings as in our Terms and Conditions, accessible from https://www.forcescience.org/

Information Collection And Use

We collect several different types of information for various purposes to provide and improve our Service to you.

Types of Data Collected

Personal Data

While using our Service, we may ask you to provide us with certain personally identifiable information that can be used to contact or identify you (“Personal Data”). Personally identifiable information may include, but is not limited to:

  • Email address
  • First name and last name
  • Phone number
  • Address, State, Province, ZIP/Postal code, City
  • Cookies and Usage Data

Usage Data

We may also collect information on how the Service is accessed and used (“Usage Data”). This Usage Data may include information such as your computer’s Internet Protocol address (e.g. IP address), browser type, browser version, the pages of our Service that you visit, the time and date of your visit, the time spent on those pages, unique device identifiers and other diagnostic data.

Tracking & Cookies Data

We use cookies and similar tracking technologies to track the activity on our Service and hold certain information.

Cookies are files with small amount of data which may include an anonymous unique identifier. Cookies are sent to your browser from a website and stored on your device. Tracking technologies also used are beacons, tags, and scripts to collect and track information and to improve and analyze our Service.

You can instruct your browser to refuse all cookies or to indicate when a cookie is being sent. However, if you do not accept cookies, you may not be able to use some portions of our Service. You can learn more how to manage cookies in the Browser Cookies Guide.

Examples of Cookies we use:

  • Session Cookies. We use Session Cookies to operate our Service.
  • Preference Cookies. We use Preference Cookies to remember your preferences and various settings.
  • Security Cookies. We use Security Cookies for security purposes.

Use of Data

Force Science Institute, Ltd. uses the collected data for various purposes:

  • To provide and maintain the Service
  • To notify you about changes to our Service
  • To allow you to participate in interactive features of our Service when you choose to do so
  • To provide customer care and support
  • To provide analysis or valuable information so that we can improve the Service
  • To monitor the usage of the Service
  • To detect, prevent and address technical issues

Transfer Of Data

Your information, including Personal Data, may be transferred to — and maintained on — computers located outside of your state, province, country or other governmental jurisdiction where the data protection laws may differ than those from your jurisdiction.

If you are located outside United States and choose to provide information to us, please note that we transfer the data, including Personal Data, to United States and process it there.

Your consent to this Privacy Policy followed by your submission of such information represents your agreement to that transfer.

Force Science Institute, Ltd. will take all steps reasonably necessary to ensure that your data is treated securely and in accordance with this Privacy Policy and no transfer of your Personal Data will take place to an organization or a country unless there are adequate controls in place including the security of your data and other personal information.

Disclosure Of Data

Legal Requirements

Force Science Institute, Ltd. may disclose your Personal Data in the good faith belief that such action is necessary to:

  • To comply with a legal obligation
  • To protect and defend the rights or property of Force Science Institute, Ltd.
  • To prevent or investigate possible wrongdoing in connection with the Service
  • To protect the personal safety of users of the Service or the public
  • To protect against legal liability

Security Of Data

The security of your data is important to us, but remember that no method of transmission over the Internet, or method of electronic storage is 100% secure. While we strive to use commercially acceptable means to protect your Personal Data, we cannot guarantee its absolute security.

Service Providers

We may employ third party companies and individuals to facilitate our Service (“Service Providers”), to provide the Service on our behalf, to perform Service-related services or to assist us in analyzing how our Service is used.

These third parties have access to your Personal Data only to perform these tasks on our behalf and are obligated not to disclose or use it for any other purpose.


We may use third-party Service Providers to monitor and analyze the use of our Service.

  • Google AnalyticsGoogle Analytics is a web analytics service offered by Google that tracks and reports website traffic. Google uses the data collected to track and monitor the use of our Service. This data is shared with other Google services. Google may use the collected data to contextualize and personalize the ads of its own advertising network.You can opt-out of having made your activity on the Service available to Google Analytics by installing the Google Analytics opt-out browser add-on. The add-on prevents the Google Analytics JavaScript (ga.js, analytics.js, and dc.js) from sharing information with Google Analytics about visits activity.For more information on the privacy practices of Google, please visit the Google Privacy & Terms web page: https://policies.google.com/privacy?hl=en

Links To Other Sites

Our Service may contain links to other sites that are not operated by us. If you click on a third party link, you will be directed to that third party’s site. We strongly advise you to review the Privacy Policy of every site you visit.

We have no control over and assume no responsibility for the content, privacy policies or practices of any third party sites or services.

Children’s Privacy

Our Service does not address anyone under the age of 18 (“Children”).

We do not knowingly collect personally identifiable information from anyone under the age of 18. If you are a parent or guardian and you are aware that your Children has provided us with Personal Data, please contact us. If we become aware that we have collected Personal Data from children without verification of parental consent, we take steps to remove that information from our servers.

Changes To This Privacy Policy

We may update our Privacy Policy from time to time. We will notify you of any changes by posting the new Privacy Policy on this page.

We will let you know via email and/or a prominent notice on our Service, prior to the change becoming effective and update the “effective date” at the top of this Privacy Policy.

You are advised to review this Privacy Policy periodically for any changes. Changes to this Privacy Policy are effective when they are posted on this page.

Contact Us

If you have any questions about this Privacy Policy, please contact us:

  • By email: support@forcescience.org
  • By visiting this page on our website: https://www.forcescience.org/contact
  • By phone number: 866-683-1944
  • By mail: Force Science Institute, Ltd.