fbpx

Can Cops Really Avoid “Extra” Shots? A Realistic Research Review

Print Friendly, PDF & Email

A flashpoint of controversy in some officer-involved shootings is when officers do not immediately cease fire the moment a deadly threat ends and they are no longer in mortal danger.

An officer’s ability to instantly stop pulling the trigger once a “stop shooting” signal becomes evident is not always considered. Instead, the officer behind the gun may face harsh media criticism and daunting legal action alleging deliberate excessive force for firing “unnecessary” extra rounds.

This is a conundrum that the Force Science Institute has explored in pioneering research, and a review of its findings is published in the current issue of Law Enforcement Executive Forum, a peer-reviewed journal.

The report, authored by FSI’s executive director Dr. Bill Lewinski, Dr. William Hudson, dean of the College of Engineering, Mathematics, and Science at the University of Wisconsin-Platteville, and Jennifer Dysterheft, a Force Science research associate and doctoral candidate at the University of Illinois, focuses primarily on four human-perception, decision-making, reaction-time experiments conducted with 102 experienced LEOs in Arizona.

“Our findings, obtained under stressful but nonthreatening laboratory conditions, comprise a starting point for understanding the human dynamics involved in promptly concluding a shooting episode,” Lewinski told Force Science News. “They very clearly illustrate the challenges of responding instantaneously to a rapidly changing situation.

“The infinitely more complex circumstances of a real-world, life-threatening gunfight are likely only to magnify what our officer volunteers experienced.”

LIGHT CUES

In the experiments, the officers one at a time were equipped with nonfiring 9mm Glock training guns that were rigged so that trigger pulls could be precisely timed to thousands of a second. In a training room, they then faced a 3X3-ft. “stimulus board” studded with nine clusters of colored LED lights that could be remotely activated by computer in unpredictable patterns of increasing complexity. Each officer responded with five “trials” to each of a series of four tests as monitors measured their trigger-pull reaction times.

Test #1

To establish a simple typical reaction time, officers were instructed to watch a specific cluster of lights on the board and when a green light came on, they were to pull the trigger once, “as quickly as possible.”

The fastest time between the light flashing on and an officer beginning to move the trigger was 0.17 second, with the slowest being half a second. The average time to perceive the change cue and initiate trigger pull was 0.25 second. This is starting with the officer’s gun already aimed at the threat, with the officer’s finger on the trigger and the officer primed to respond.

Test #2

For these five trials, the officers were told to begin “shooting” as quickly as possible when the green light came on and to “continuously pull the trigger” as they might in an actual gunfight until the light blinked off, representing an end of threat. Then they “must stop instantly” or their “score” would be penalized. The duration of the shooting time was randomly varied among the trials.

Responding to this simple stimulus, some officers were able to stop immediately, but the slowest to stop completed six more trigger pulls after the light went off before releasing the trigger for good. On average, officers shot one more round and started a second trigger pull that would likely be completed in a real-world situation after the “threat” stopped.

Test #3

Officers were to watch a full row of light clusters, which consisted of three bulbs each. If only one or two lights in a cluster came on, the officers were not to shoot. Only when a complete cluster was simultaneously illuminated were they to fire.

This relatively simple increase in the complexity of decision-making roughly doubled reaction times. Now, on average, 0.56 second passed between the time a full cluster lit up and the officers initiated a trigger pull.

Test #4

In the final and most complex trials, officers were to focus on the entire stimulus board. They were to pull the trigger “as quickly as possible” once all the green lights in any row were lit. As distractions, yellow and red lights in the clusters might turn on or the green lights in a row might not all be lit.

The average reaction time to start shooting–0.46 second–actually improved slightly for this experiment. The officers learned to “anticipate a pattern evolving and simply had to recognize that pattern,” the researchers explain.

IMPLICATIONS

The decision-making in the experiments was the “simplest possible” compared to the challenges facing officers in real-world deadly force encounters, the researchers point out. In street confrontations, LEOs must deal with “a multitude of stimuli; ambiguous circumstances; poor ambient light; and a complex, dynamic, and often evolving threat situation”–all of which will tend almost inevitably to impact on an officer’s ability to rapidly evaluate options and react to contextual changes.

“It is always expected that officers perform at expert levels of shooting,” Lewinski says. “If they fire excess rounds or make any mistakes, they are highly criticized and held accountable. Yet this study suggests, among other things, that many officers may be unable to cease firing instantaneously when the suspect is no longer a threat.

“Everything an officer does takes time. It takes time to perceive that a threat level has changed and it takes time to decide to stop shooting and to mechanically activate that decision. When officers are engaged in continuous rapid fire, as their training requires for defending their lives, the stopping process is more complex and generally takes longer.”

In their paper, the researchers note that “if an officer were to take [merely] 0.56 seconds to react to a stop-shooting signal, three to four [extra] rounds could be fired by the officer as an automatic sequence after the signal to stop had already occurred.” The slower an officer’s reaction time, “the greater number of shots [can] be fired before a conscious stopping can occur.”

The researchers also comment on the number of mistakes officers made during Tests #3 and 4. In Test #3, 3% of rounds fired were “false positives”; that is, officers misread the stimulus and fired when they shouldn’t have. “That number more than doubled [to 8%] with the addition of pattern recognition” in Test #4.

“This directly translates into officer-involved shootings, suggesting that with complex decision-making components, in addition to movement patterns, there is nearly a 10% risk of officers making false positive errors or shooting when the pattern appears to represent an evolving threat but in reality it never reaches that point.”

What suggests even more physical danger for officers is the number of false negatives that occurred in the tests, “when the officers did not shoot when they should have.” This represented only 1% of the trials in Tests #3 and 4, but on the street the consequences could have been grave, giving “deadly suspects the advantage” and putting officers’ “lives at risk.”

Among other troublesome aspects of “extra shots” incidents, the researchers also address controversial complications that often arise from rounds fired at moving vehicles and at suspects who are falling to the ground after already being hit.

“Before analyzing real-life shootings, it is necessary to understand the basic reaction times and other data recorded in this study,” Lewinski says. “The principle purpose of the study was to create a foundation of such knowledge. We anticipate conducting more sophisticated testing of pattern recognition and decision-making in the future.”

The full study, titled “Police Officer Reaction Time to Start and Stop Shooting: The Influence of Decision-making and Pattern Recognition,” will soon be available on the journal’s website as well as on the Force Science Institute site. We will make an announcement once the study is posted.

The study findings and their implications for investigators and use-of-force reviewers are discussed in detail during the five-day certification course in Force Science Analysis.

GDPR

  • Privacy Policy

Privacy Policy

Effective date: January 06, 2019

Force Science Institute, Ltd. (“us”, “we”, or “our”) operates the https://www.forcescience.org/ website (hereinafter referred to as the “Service”).

This page informs you of our policies regarding the collection, use, and disclosure of personal data when you use our Service and the choices you have associated with that data. Our Privacy Policy for Force Science Institute, Ltd. is based on the Privacy Policy Template from Privacy Policies.

We use your data to provide and improve the Service. By using the Service, you agree to the collection and use of information in accordance with this policy. Unless otherwise defined in this Privacy Policy, the terms used in this Privacy Policy have the same meanings as in our Terms and Conditions, accessible from https://www.forcescience.org/

Information Collection And Use

We collect several different types of information for various purposes to provide and improve our Service to you.

Types of Data Collected

Personal Data

While using our Service, we may ask you to provide us with certain personally identifiable information that can be used to contact or identify you (“Personal Data”). Personally identifiable information may include, but is not limited to:

  • Email address
  • First name and last name
  • Phone number
  • Address, State, Province, ZIP/Postal code, City
  • Cookies and Usage Data

Usage Data

We may also collect information on how the Service is accessed and used (“Usage Data”). This Usage Data may include information such as your computer’s Internet Protocol address (e.g. IP address), browser type, browser version, the pages of our Service that you visit, the time and date of your visit, the time spent on those pages, unique device identifiers and other diagnostic data.

Tracking & Cookies Data

We use cookies and similar tracking technologies to track the activity on our Service and hold certain information.

Cookies are files with small amount of data which may include an anonymous unique identifier. Cookies are sent to your browser from a website and stored on your device. Tracking technologies also used are beacons, tags, and scripts to collect and track information and to improve and analyze our Service.

You can instruct your browser to refuse all cookies or to indicate when a cookie is being sent. However, if you do not accept cookies, you may not be able to use some portions of our Service. You can learn more how to manage cookies in the Browser Cookies Guide.

Examples of Cookies we use:

  • Session Cookies. We use Session Cookies to operate our Service.
  • Preference Cookies. We use Preference Cookies to remember your preferences and various settings.
  • Security Cookies. We use Security Cookies for security purposes.

Use of Data

Force Science Institute, Ltd. uses the collected data for various purposes:

  • To provide and maintain the Service
  • To notify you about changes to our Service
  • To allow you to participate in interactive features of our Service when you choose to do so
  • To provide customer care and support
  • To provide analysis or valuable information so that we can improve the Service
  • To monitor the usage of the Service
  • To detect, prevent and address technical issues

Transfer Of Data

Your information, including Personal Data, may be transferred to — and maintained on — computers located outside of your state, province, country or other governmental jurisdiction where the data protection laws may differ than those from your jurisdiction.

If you are located outside United States and choose to provide information to us, please note that we transfer the data, including Personal Data, to United States and process it there.

Your consent to this Privacy Policy followed by your submission of such information represents your agreement to that transfer.

Force Science Institute, Ltd. will take all steps reasonably necessary to ensure that your data is treated securely and in accordance with this Privacy Policy and no transfer of your Personal Data will take place to an organization or a country unless there are adequate controls in place including the security of your data and other personal information.

Disclosure Of Data

Legal Requirements

Force Science Institute, Ltd. may disclose your Personal Data in the good faith belief that such action is necessary to:

  • To comply with a legal obligation
  • To protect and defend the rights or property of Force Science Institute, Ltd.
  • To prevent or investigate possible wrongdoing in connection with the Service
  • To protect the personal safety of users of the Service or the public
  • To protect against legal liability

Security Of Data

The security of your data is important to us, but remember that no method of transmission over the Internet, or method of electronic storage is 100% secure. While we strive to use commercially acceptable means to protect your Personal Data, we cannot guarantee its absolute security.

Service Providers

We may employ third party companies and individuals to facilitate our Service (“Service Providers”), to provide the Service on our behalf, to perform Service-related services or to assist us in analyzing how our Service is used.

These third parties have access to your Personal Data only to perform these tasks on our behalf and are obligated not to disclose or use it for any other purpose.

Analytics

We may use third-party Service Providers to monitor and analyze the use of our Service.

  • Google AnalyticsGoogle Analytics is a web analytics service offered by Google that tracks and reports website traffic. Google uses the data collected to track and monitor the use of our Service. This data is shared with other Google services. Google may use the collected data to contextualize and personalize the ads of its own advertising network.You can opt-out of having made your activity on the Service available to Google Analytics by installing the Google Analytics opt-out browser add-on. The add-on prevents the Google Analytics JavaScript (ga.js, analytics.js, and dc.js) from sharing information with Google Analytics about visits activity.For more information on the privacy practices of Google, please visit the Google Privacy & Terms web page: https://policies.google.com/privacy?hl=en

Links To Other Sites

Our Service may contain links to other sites that are not operated by us. If you click on a third party link, you will be directed to that third party’s site. We strongly advise you to review the Privacy Policy of every site you visit.

We have no control over and assume no responsibility for the content, privacy policies or practices of any third party sites or services.

Children’s Privacy

Our Service does not address anyone under the age of 18 (“Children”).

We do not knowingly collect personally identifiable information from anyone under the age of 18. If you are a parent or guardian and you are aware that your Children has provided us with Personal Data, please contact us. If we become aware that we have collected Personal Data from children without verification of parental consent, we take steps to remove that information from our servers.

Changes To This Privacy Policy

We may update our Privacy Policy from time to time. We will notify you of any changes by posting the new Privacy Policy on this page.

We will let you know via email and/or a prominent notice on our Service, prior to the change becoming effective and update the “effective date” at the top of this Privacy Policy.

You are advised to review this Privacy Policy periodically for any changes. Changes to this Privacy Policy are effective when they are posted on this page.

Contact Us

If you have any questions about this Privacy Policy, please contact us:

  • By email: support@forcescience.org
  • By visiting this page on our website: https://www.forcescience.org/contact
  • By phone number: 866-683-1944
  • By mail: Force Science Institute, Ltd.